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Road Marking Contrast Threshold Revisited
Rik Marco Spieringhs a, Kevin Smet a, Ingrid Heynderickxb, and Peter Hanselaer a

aESAT/Light&Lighting Laboratory, KU Leuven, Ghent, Belgium; bIEIS/Human Technology Interaction, TU Eindhoven, Eindhoven, The 
Netherlands

ABSTRACT
Sufficient contrast between road surface and road markings is key for a safe and comfortable 
driving experience. This calls for a comprehensive and well established contrast (threshold) model, 
which ideally results in a single contrast threshold value independent of object angular size or 
road luminance. The contrast threshold model introduced by Adrian is still commonly used in 
road lighting. More recently, new contrast metrics that also predict supra-threshold contrast 
visibility have been proposed, but the corresponding visibility thresholds are not yet known. In 
the present study, participants are presented a rendering of a highway, including road marking 
arrows of various size and luminance and were asked to indicate the direction of the arrow. The 
luminance of the road surface, acting as background for the markings, was varied too. Due to the 
very low luminance values and the very small differences in luminance, measurement accuracy 
and calibration issues require special attention. The results show good agreement with Adrian’s 
visibility model (R2 = 0.75) in terms of luminance contrast, background luminance and size. In 
addition, we used our experimental data to define contrast thresholds for several other existing 
image based contrast models. Unfortunately, it seems to be impossible to state one unique 
threshold contrast value independent of object angular size and road luminance.
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1. Introduction

Reducing energy consumption while maintaining 
traffic safety is a main challenge in the design of 
road lighting. Traffic safety requires a sufficiently 
high perceived luminance contrast between the 
road surface and road markings. This luminance 
contrast is the result of illumination by car head
lamps and road lighting in relation to the reflec
tion characteristics of the road surface and the 
road markings. As LEDs are small-sized light 
sources, they offer new opportunities in (even 
asymmetric) beam control using dedicated lenses. 
In addition, by mainly creating light where it is 
needed, LEDs offer the opportunity to apply dim
ming, which contributes to a reduction of energy 
consumption. An advanced way of reducing 
energy in road lighting, while maintaining good 
visibility of objects or signs, is the road lighting 
concept called “Probeam” (Kimura et al. 2019; Sato 
and Hagio 2014). In this concept, luminaires direct 
most of their luminous flux forwards, in the direc
tion of view of the driver. One of its objectives is to 

illuminate retroreflective road marking arrows at 
distances beyond the reach of car headlights creat
ing an optimal guide for motorized traffic. To 
optimize “Probeam” in terms of the balance 
between energy consumption and traffic safety 
and to define the level of illumination that should 
be applied in practice, it is essential to understand 
contrast perception between road markings and 
the background road surface.

The current study aims to evaluate to what 
extent the Adrian model (Adrian 1989), known 
to be accurate in predicting the visibility of targets 
in uniform backgrounds, can also be used to deter
mine contrast thresholds for the discrimination of 
the direction of road marking arrows of different 
size presented on road surfaces, for a set of lumi
nance values attributed to both surfaces. The visual 
task of determining the direction of a road mark
ing arrow is more complex than just detecting the 
object itself, and therefore we expect this increase 
in complexity of the visual task to result in higher 
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contrast thresholds. More importantly, more 
recent contrast models, such as a difference of 
gaussian receptive field model and a pyramidal 
multilevel model, are explored and the corre
sponding threshold values have been determined. 
These models only require a luminance image as 
input and need no specific information on object 
angular size, background luminance, or luminance 
of the target, which would make them more easily 
applicable in realistic complex scenes. Ideally, each 
model yields a constant contrast threshold value 
for detecting the arrow direction, irrespective of 
the luminance of road and arrow and the size of 
the arrow.

1.1. State of the art

One of the most prevalent and relevant models 
within road lighting for determining the visibility 
of an object is Adrian’s contrast threshold model 
(Brémond 2020). This model is based on predict
ing the luminance difference threshold needed to 
see an object and follows both Ricco’s and Weber’s 
law (Adrian 1989). This contrast threshold model 
was extended to road markings by a study of the 
European commission DG Transport committee 
described in the COST 331 report (COST 1999).

The relative visual performance (RVP) model, 
in which the ratio of visual performance (VP) over 
an optimal VP value is calculated, was introduced 
by Rea and Ouellette in 1991. The RVP model 
predicts visual performance rather than only the 
visibility threshold, and has been applied in com
mercial and industrial environments (Rea and 
Ouellette 1991). Although mainly established for 
indoor lighting, this model has also been used in 
outdoor lighting (Brémond 2020). However, since 
our study focuses on finding visibility thresholds 
and not on supra-threshold visibility performance, 
the RVP model is not included in our evaluation.

Besides the visual performance and visibility 
models used for road lighting, there has been an 
extensive amount of research done on predicting 
contrast perception in digital images. Image based 
contrast models can be useful in overcoming the 
limitations and complications of Adrian’s contrast 
model and Rea’s RVP model, such as applications 
in which heterogeneous backgrounds and targets 
are involved. Additionally, the image based 

contrast models could result in a more applicable 
visibility metric where the only necessary input is 
the luminance image. From the many existing 
contrast models, we here use the most relevant 
and applicable ones (Simone et al. 2012). They 
are generally based on two distinguishable con
cepts of the human visual system: the difference 
of gaussians (DoG) and the retinal-like subsam
pling of contrast (Rizzi et al. 2004; Simone et al. 
2012; Tadmor and Tolhurst 2000). The first fea
ture was adopted and modified by Tadmore and 
Tolhurst in 2000, who investigated the usefulness 
of a DoG based receptive field model for predict
ing the perception of contrast in natural scenes, as 
experienced by the retinal ganglion cells and the 
neurons in the lateral geniculate nucleus (LGN). 
Later Joulan et al. extended the DoG model by 
including a multi-scale spatial filter based on para
meters determined by the contrast sensitivity func
tion (CSF). The second feature was adopted by 
Rizzi et al. in 2004 to determine a contrast mea
sure in digital images. In 2012, Simone et al. 
extended and combined these two features into 
a weighted level framework model. All these con
trast models have in common that no attempt has 
been made to define threshold values for 
a discrimination task.

To be able to further optimize new road lighting 
concepts, the visibility and contrast models men
tioned above are evaluated to predict the direction 
detectability of a road marking arrow. With this 
application in mind, all models are only evaluated 
for positive contrasts, in which the arrow is 
brighter than the road surface background.

2. Adrian’s contrast threshold model (1989)

In 1946, Blackwell measured the detectability 
threshold of a dark spot on a white screen. He 
indicated that for a decrease in the visual angle 
and an increase in adaptation brightness, the con
trast threshold needed to detect the dark spot 
increased. Another important observation was 
that at high brightness and with sufficiently large 
stimuli, the contrast threshold became linear as 
a function of adaptation luminance. This relation 
reflects the Weber-Fechner law of perception.

Later in 1989, Adrian used the data obtained by 
Blackwell (1946) and combined them with the 
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contrast threshold data from other studies (Adrian 
1969; Aulhorn 1964; Blackwell 1966; Blackwell and 
Blackwell 1980; Schmidt-Claussen 1969) to deter
mine a model for the visibility of targets, as shown 
in Equation 1:

ΔLthreshold ¼ k
ffiffiffi
;
p

/
þ

ffiffiffi
L
p

 !2

� PF � EF � AF (1) 

where ΔLthreshold refers to the difference in lumi
nance between target and background at threshold 
visibility, Φ to the luminous flux function, α to the 
size of the object in arc minutes, L to the lumi
nance function (i.e., a function related to the back
ground luminance) and k is a constant that is 
dependent on the experimental conditions. 
Finally, EF, AF and PF are factors accounting for 
exposure time, age and contrast polarity, respec
tively. Adrian’s visibility model basically follows 
a geometric summation based on the Weber- 
Fechner law (contribution of the luminance func
tion) and Ricco’s law (contribution of the lumi
nous flux function) suggested by Berek (1943). For 
a detailed explanation of these functions and fac
tors we refer to Adrian (1969).

Since the current study concerns positive con
trasts, exposure times of 2 seconds and a relatively 
young group of participants (i.e., students), the 
contrast polarity, exposure time and age factor 
are all very close or equal to 1, and as such only 
a part of Adrian’s model is investigated.

3. Image processing contrast models

3.1. Tadmor and Tolhurst (2000)

In 2000, Tadmor and Tolhurst investigated the use
fulness of the difference of Gaussian (DoG) receptive 
field model for predicting the perception of contrast 
in natural scenes experienced by the retinal ganglion 
cells and the neurons in the lateral geniculate nucleus 
(LGN). They assumed that the spatial sensitivity of 
the center of the receptive field is characterized by 
a bivariate circular-symmetric Gaussian with a peak 
amplitude of 1 and a radius rc. The spatial sensitivity 
of the surround receptive field is characterized by 
a second bivariate circular-symmetric Gaussian with 
a larger radius rs and a scaled amplitude.

The output of the center receptive field with 
the midpoint at pixel coordinates x,y is calcu
lated as:

Rc x;yð Þ¼
Xxþ3rc

i¼x� 3rc

Xyþ3rc

j¼y� 3rc

G i� x;j� y;rcð ÞL i;jð Þ (2) 

where L i; jð Þ indicates the luminance at the pixel 
location i,j and G i � x; j � y; rð Þ represents 
a bivariate Gaussian centered at x,y and with radius 
r ¼ rc. The output of the surround receptive field 
with the midpoint at pixel coordinates x,y is calcu
lated similarly to the center receptive field by 
Equation 3:

Rs x;yð Þ¼
Xxþ3rs

i¼x� 3rs

Xyþ3rs

j¼y� 3rs

0:85
rc

rs

� �2

G i� x;j� y;rsð ÞL i;jð Þ

(3) 

The traditional DoG model defines the response 
of the retinal ganglion cells and the neurons in 
the LGN as a subtraction of the surround recep
tive field output from that of the center receptive 
field:

DoG x; yð Þ ¼ Rc x; yð Þ � Rs x; yð Þ (4) 

Tadmor and Tolhurst suggested some modifica
tions to the traditional DoG model based on the 
dependency of the gain of the LGN and retinal 
ganglion cells on the local mean luminance due to 
the process of light adaptation. The traditional DoG 
model assumes that the response of a neuron 
depends solely on the local luminance difference 
and, therefore, must be normalized by the local 
mean luminance to account for the process of 
light adaptation.

This modification of the DoG model by Tadmor 
and Tolhurst resulted in three hypothetical measures 
of contrast. The first measure is a normalization 
based on center adaptation only (Cc):

Cc x; yð Þ ¼
Rc x; yð Þ � Rs x; yð Þ

Rc x; yð Þ
(5) 

The second measure is a normalization based on 
surround adaptation only (Cs): 

Cs x; yð Þ ¼
Rc x; yð Þ � Rs x; yð Þ

Rs x; yð Þ
(6) 
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The third measure is a normalization based on an 
adaptation at both the center and surround recep
tive field (Ccs):

Ccs x; yð Þ ¼
Rc x; yð Þ � Rs x; yð Þ

Rc x; yð Þ þ Rs x; yð Þ
(7) 

These measures of contrast result in local contrast 
values for each pixel p.

3.2. Rizzi, Algeri, Medeghini and Marini (2004)

Another contrast model that was introduced a few 
years later than the Tadmor and Tolhurst contrast 
model is the RAMMG model (Rizzi et al. 2004). It 
refers to the abbreviation of the authors family 
names. The RAMMG is based on a multilevel ana
lysis using pyramidal under-sampling of a CIELAB 
lightness image. For each pixel in the lightness image 
for each of the pyramid layers, a local neighboring 
contrast value Pp;l � Pj;p;l

�
�

�
� is calculated. A global 

contrast estimate (CRAMM) is then provided by taking 
the average of all the local contrasts over all the 
different levels, as shown in Equation 8.

CRAMM ¼
1

NL

XNL

l¼1

1
Np;L

XNp;L

p¼1

X8

j¼1

Pp;l � Pj;p;l
�
�

�
�

8

 ! !

(8) 
The number of levels NL is determined by the pyr
amidal under-sampling and depends on the resolu
tion of the original image. Np;L marks the number of 
pixels for a specific pyramid layer and j signifies the 
eight neighboring pixels of a pixel in the layer.

3.3. Joulan, Hautiere, and Brémond (2011)

In 2011, Joulan et al. proposed a framework to 
compute the visibility of objects in a luminance 
image of a road scene based on edge detection 
(Joulan et al. 2011). The framework exists of two 
algorithms, one that takes into account the 
visual adaptation and a second one that uses 
a set of DoG spatial filters based on coefficients 
computed from Barten’s (1999) contrast sensitiv
ity function (CSF).

The first algorithm applies a gain factor (1/La) to 
the input luminance image I0 where the gain factor is 

set to the inverse of the adaptation luminance (La), 
defined as the averaged luminance of I0:

I1 ¼ I0
1
La

(9) 

The second algorithm applies a weighted sum of 
DoG (SDoG) to the image I1 for a set of filters k: 

SDoG I1ð Þ ¼
X

k
ωkGσþk

� Gσ�k I1ð Þ (10) 

where ωk is the weight of the DoG for filter k, Gσ the 
normalized Gaussian with the standard deviation σþk 
for the center and σ�k for the surround for filter k. 
The standard deviation for the center is computed 
from Barten’s CSF and the standard deviation for the 
surround it is given by σ�k ¼ λσþk with λ = 3. We 
refer to Joulan et al. (2011) for more details.

3.4. Simone, Pederson, and Hardeberg (2012)

In 2012, Simone et al. introduced the weighted- 
level framework (WLF) that includes the DoG 
model, the pyramidal subsampling with prefilter
ing, and weights in the recombination of the 
pyramid layers. Similar to Rizzi et al. the WLF 
is based on a multilevel analysis using pyramidal 
subsampling, but it uses an antialiasing filter in 
addition. For each level of the subsampled RGB 
image, the local contrast of each pixel is calcu
lated using the Tadmor and Tolhurst DoG 
model. This results in a local contrast map for 
each level l, from which the averaged contrast �c 
is determined. Subsequently, an overall contrast 
measure C is calculated for the R, G and 
B channel separately by a weighted recombina
tion of the average contrast of each level where 
the weights τ are the variance in local contrast 
values and Nl the total number of levels. Finally, 
a global contrast measure CWLF RSCð Þ is deter
mined by the weighted sum of the overall con
trast measure over the three channels where the 
weights ω are the variance in overall contrast 
values: 

CWLF RSCð Þ ¼ ωRCRSC
R þ ωgCRSC

G þ ωbCRSC
B (11) 

where

496 R. M. SPIERINGHS ET AL.



CRSC
R ¼

1
Nl

XNl

l
τR;l�cR;l (12)  

CRSC
G ¼

1
Nl

XNl

l
τG;l�cG;l (13)  

CRSC
B ¼

1
Nl

XNl

l
τB;l�cB;l (14) 

4. Method

The current study evaluates to what extent exist
ing visibility models can be generalized toward 
predicting the direction detectability of road 
marking arrows. Since the existing experimental 
studies on the visibility of road markings did not 
focus on the detection of the direction of road 
marking arrows, a subjective experiment was 
performed.

4.1. Scenes

For this study, test scenes of a highway were ren
dered in the physical-based-renderer (PBR) 
Mitsuba (Jakob 2010), and a 3D model of the 
scene was created in Blender (Community 2017). 
The scene was created in different layers by using 
single Mitsuba renderings of the sky, grass, lamp 
poles, railing, the road surface, the striped middle 
road markings, the long left road marking, the long 
right road marking and the road arrow, as illu
strated in Figs. 1 and 2. Since these elements are 
displayed at relatively large angle from the target in 
the visual field, it is not expected that the addition 
of these objects will affect our findings.

After artificially altering the digital counts of 
each layer, the layers were united into a single 
image which was then presented to the partici
pants on a calibrated display.

The camera used in Blender to capture the scene 
and to render in Mitsuba is set at 1.5 m above the 
road surface and at 1.3 m from the middle striped 
road marking, aiming 1 degree below the horizon
tal, simulating the position and viewing direction of 
a typical (car) driver on a highway (European 
Committee for Standardization 2015b). The focal 

Fig. 1. Example of the separated layers in side view: sky in blue, the road in green, road markings in purple and the road marking 
arrow in red.
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length and sensor size of the camera are 16.7 mm 
and 22.3 mm, respectively. These camera settings 
are used to simulate the human eye (Mostafawy 
et al. 1997; Wu et al. 2011).

The road of 7 m wide is split in two lanes of 
each 3.5 m wide, representing typical dimensions 
of a Dutch highway (Ministerie van Infrastructuur 
en Waterstaat 2019). The left and right road mark
ings are 15 cm wide. The middle road markings 
are 10 cm wide, 3 m long and have a spacing of 
9 m (COST 1999). These dimensions correspond 
to the guidelines for road markings by the 

Directorate-General for Public Works and Water 
Management Rijkswaterstaat (1991). Road mark
ings are always shown in positive contrast to the 
road surface.

Lamp poles with a height of 18 m are positioned 
to the left side of the road at 90 m intervals. Trees 
are placed on the right side of the road at 25 m 
intervals. To each side of the road, railings and 
grass planes are added as shown in Fig. 3. The 
trees, railings, grass plane and lamp posts add 
complexity to the scene and make the environ
ment more realistic.

Fig. 3. A representative highway scene rendered by Mitsuba.

Fig. 2. Example of the separated layers presented in Fig. 1, but now in front view.
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4.2. Experimental conditions

For this study, three road luminance values (i.e., 
0.25, 0.66 and 0.99 cd/m2) were selected, represen
tative of typical values found under bad, average 
and good road lighting conditions (European 
Committee for Standardization 2015a). For each 
road luminance value, we determined the required 
contrast to detect the correct pointing direction of 
an arrow varying in angular extent (deduced from 
its distance to a driver position) and luminance. 
The road arrows were 7.5 m in length and at most 
1.05 m in width (Ministerie van Verkeer en 
Waterstaat, Rijkswaterstaat 1991). The corre
sponding angular size was calculated in arc min
utes based on the plane angle subtended by the 
length of the road marking in front of the eye (see 
Fig. 4) at four observer distances (i.e., 40, 60, 80 
and 100 m).

To determine a good range of luminance values 
for the arrows we started with a pilot experiment 
that followed the exact same protocol as the main 
experiment (further described below), but with 
random luminance values for the arrows instead 
of controlled values. This pilot experiment was 
executed with 3 observers, and based on its results, 
we selected five arrow luminance values for each 
road luminance and each angular size of the 
arrow. These values are expected to cover 

a visibility range from non-perceptual (50%) to 
a 100% correct evaluation. Table 1 shows these 
luminance values, calculated in the CIE 1931 2° 
color space, because of the small angular extent of 
our stimuli.

4.3. Experimental setup

The experimental setup consisted of a calibrated 
65-inch Samsung QE65Q90 display, a keyboard 
and a chinrest, as shown in Fig. 5. The display 
had a resolution of 3840 × 2160 (4k) pixels and 
a refresh rate of 120 Hz. The display’s absolute 
full-brightness value was substantially lowered to 
enable sufficiently high resolution in luminance at 
the low luminance levels required in the experi
ment. As a consequence, its maximum luminance 
(i.e., R =G =B =256) was 33.19 cd/m2. The display 
was positioned perpendicularly to the observer’s 
eyes with its center aligned at the height of the 
observer’s eyes and at a distance of 108 cm. As 
such, the display covered a vertical and horizontal 
field of view (FOV) of 42° and 68°, respectively. 
The experiment took place in a dark room and 
participants were seated on a chair with their chin 

Fig. 4. Image of a road marking arrow with an indication of its 
length.

Table 1. Five luminance values of the arrow (in cd/m2) for each 
combination of road surface luminance (in cd/m2) and angular 
length of the arrow (in arcmin).

Arrow size (‘) Lroad (cd/m2) Larrow (cd/m2)

20.3 0.25 0.25 0.27 0.29 0.31 0.33
9.5 0.25 0.25 0.27 0.29 0.31 0.33
5.5 0.25 0.27 0.29 0.31 0.33 0.35
3.6 0.25 0.29 0.31 0.33 0.35 0.38
20.3 0.66 0.66 0.70 0.74 0.78 0.82
9.5 0.66 0.66 0.70 0.74 0.78 0.82
5.5 0.66 0.66 0.70 0.74 0.78 0.82
3.6 0.66 0.74 0.78 0.82 0.86 0.90
20.3 0.99 0.99 1.04 1.09 1.14 1.19
9.5 0.99 0.99 1.04 1.09 1.14 1.19
5.5 0.99 1.03 1.09 1.14 1.19 1.24
3.6 0.99 1.09 1.14 1.19 1.24 1.29

Fig. 5. Picture of the experimental setup, showing the display, 
chinrest and keyboard.
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placed on the chinrest. Fixing the eye height and 
the visual field was needed to match the camera 
characteristics used to capture the rendered scene 
in Blender, and hence ensured that distances on 
the screen matched the physical reality represented 
in the scene.

4.4. Calibration and measurements

Calibration and characterization of the display 
were of utmost importance, as we wanted to dis
play small luminance values and luminance 
differences. To this end, spectral radiance mea
surements were performed with an air cooled 
Ocean Optics QE65 Pro spectrometer equipped 
with a Bentham TEL301 fiber coupled telescope 
with variable aperture. The integration time of the 
spectrometer could range from 8 ms up to 15 min
utes. Its signal-to-noise ratio was 1000:1 at full 
signal. The telescope was positioned at a distance 
of 1.5 m from the display at eye height. Before 
measuring the stimuli, a dark current measure
ment was carried out. To convert the spectrometer 
responses to spectral radiance, two Bentham SRS8 
Halogen spectral radiance standards were used. 
For measuring the low luminance values of our 
experiment, an aperture size of 3.5 mm was 
required, but this resulted in saturation when tar
geting the radiance standard. A second radiance 
standard, equipped with a neutral density filter 
with optical density 0.9, was calibrated with 
respect to the primary radiance standard using 
a smaller aperture (i.e., 1.17 mm).

To bridge the dynamic range between the cali
bration standard and our low-luminance stimuli, 
linearity of the detector response with integration 
time was crucial. This was checked by measuring 
the response of a 150 × 150 pixels stimulus located 
at the middle of the display, driven with an 8-bits 
signal of R =G =B =150. The size of this stimulus 
was slightly larger than the field of view of the 
spectrometer. The position of the stimulus was 
identical to the position of the road marking 
arrows during our experiment. The stimulus was 
measured at 16 integration times, varying between 
0.027 and 58 seconds. The dark current response 
was also measured and subtracted.

The dark corrected spectrometer response for 
each peak wavelength as a function of integration 

time confirms the spectrometer’s linearity with 
integration time.

Finally, we checked the stability of the display 
over time. To this end, a 150 × 150 pixel square 
with an 8-bits signal of R =G =B =150 was mea
sured 29 times over the course of several days. The 
first 21 measurements were taken within the first 
1.5 hours and resulted in a mean luminance of 
1.55 cd/m2 and a standard deviation of 0.002 cd/ 
m2. Three measurements were taken the day after 
and, even without recalibration, yielded a mean 
luminance of 1.55 cd/m2 and a standard deviation 
of 0.002 cd/m2. Four other measurements were 
taken five days later resulting in a mean luminance 
of 1.54 cd/m2 and a standard deviation of 
0.0007 cd/m2. These results show the high stability 
of the display and the accuracy of the measuring 
process.

The whole calibration and measurement proce
dure resulted in an accurate look-up table relating 
RGB-values to actual luminance values.

4.5. Design and procedure

In the experiment, participants had to judge the 
direction (i.e., left or right) of a road marking 
arrow on a road surface using the method of con
stant stimuli (Gescheider 1997). We used a full- 
factorial semi-between subject design with the 
luminance of the road surface (i.e., 3 levels: 0.25, 
0.66 and 0.99 cd/m2), the luminance of the road 
marking arrow (i.e., 5 levels depending on the road 
surface luminance) and the arrow’s angular size 
(i.e., 4 levels: 20.3, 9.5, 5.5 and 3.6 arcmin) as 
independent semi-between subject variables and 
the luminance difference thresholds (as defined 
below) as the dependent variable. In total, each 
participant had to judge 1 road surface luminance 
value, 5 luminance values of the road arrow, 4 
angular sizes of the arrow and 2 directions 
(arrow pointing left or right), with each condition 
repeated ten times, which resulted in 400 stimuli 
(i.e., 5×4×2×10). Participants were split into three 
groups, one for each value of the road surface 
luminance.

Before starting the experiment, participants that 
were not familiar with its procedure received an 
introduction, in which possible unclarities were 
resolved and a few trials were performed. After 
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these trials, the participants were requested to 
adapt to a gray image (subtending 3840 × 2160 
pixels at R =G =B =119, which corresponded to 
0.31 cd/m2) for two minutes in a dark room such 
that the impact of previous adaptation to any 
reference was minimized. After this adaptation 
period, the experiment started with a full gray 
image shown for 3 seconds. Afterward, we dis
played one of our stimuli for 2 seconds, followed 
by again the full gray adaptation image for 3 sec
onds. Participants were instructed to indicate 
whether the arrow on the road was pointing to 
the left or right, by pressing the corresponding 
arrow key on the keyboard. Responses could only 
be given while the stimulus was on the display 
screen, so a maximum of 2 seconds response 
time was used. If a participant correctly identified 
the direction of an arrow a response of 1 was 
recorded, and when a participant incorrectly iden
tified the direction of an arrow a response of 0 was 
recorded. When participants did not observe any 
arrow, they could abstain from responding. When 
a participant did not give a response within the 
time of exposure (i.e., 2 s) a value of 0.5 was 
recorded (i.e., assuming to be the average response 
of having to guess between two equal options). All 
stimuli were presented in random order. The 
experiment took about 45 minutes to finish.

4.6. Participants

Participants were recruited among the members of 
the authors’ lab and interested students. In total, 
18 participants conducted the experiment, i.e., 
6 per road luminance condition. Of these 18 par
ticipants 6 were female and 12 male. The partici
pants were aged from 18 to 35 years old, with an 
average age of 26.9 years (SD = 3.1).

5. Results

5.1. Analysis of the experiment

Each scene has been evaluated 10 times by each 
observer. In the analysis, proportion of correct 
responses for each participant, at each road surface 
luminance and angular size of the arrow (i.e., 
3 × 4 =12 combinations) were plotted against the 

difference in luminance of the road marking arrow 
with the road surface. A psychometric curve was 
fitted through these plots per participant, road 
surface luminance and angular size of the arrow. 
The luminance difference threshold was defined as 
the 0.75 proportion correct.

Initially, we considered the Wichmann and Hill 
method (2001a) for fitting the psychometric curves, 
using the Monte Carlo simulation of bootstrap. 
However, previous research indicated that the con
fidence intervals obtained by bootstrapping may be 
too small (Fründ et al. 2011; Hill 2002; Kuss et al. 
2005) in case of small data sets. Therefore, consider
ing the small data set of our study as well, more 
credible intervals were determined with Bayesian 
statistics (Schütt et al. 2016; Wichmann and Hill 
2001b). In this approach, the intervals were calcu
lated based on a standard prior, cumulative Gaussian 
distribution and a fixed lower asymptote at 0.5 with 
the psignifit (v.4) software that used the formulae 
provided by Schütt et al. (2016). Figure 6 shows as 
an example the psychometric function of participant 
1 for a road surface luminance of 0.25 cd/m2 and an 
angular size of the arrow of 9.5 arcmin.

For all participants and all 12 combinations of 
road surface luminance and angular size of the 
arrow, the psychometric curve was successfully 

Fig. 6. The psychometric curve (solid blue line) for participant 1 
measured for a road surface luminance of 0.25 cd/m2 and an 
arrow’s angular size of 9.5 min as a function of the luminance 
difference between arrow and road surface. The threshold is 
determined from the 0.75 proportion correct, and the corre
sponding confidence interval is indicated by the horizontal blue 
line. The corresponding threshold estimated by Adrian (includ
ing age) is indicated with the vertical black line.

LEUKOS 501



fitted (with an average R2 of 0.91 and R2 values 
ranging between 0.25 and 1.001), except for partici
pant 10 at a road surface luminance of 0.25 cd/m2 

and an arrow angular size of 3.6 arcmin, in which 
condition the data was overly dispersed (R2 of 
−0.88). Nevertheless, even for this participant 
a best threshold estimate was provided by the 
psignifit (v.4) software. We also investigated “pool
ing” the data over the six participants and then fit 
a normal cumulative distribution to the combined 
dataset, however, found the results to be similar.

For determining the inter-observer variability, the 
standard residual sum of squares (STRESS) was 
calculated as provided by Garcia et al. (2007), for 
each road surface luminance separately (i.e., 6 obser
vers), as shown in Equations 15 and 16:

STRESS ¼
1
6

X6

i¼1

P4
j¼1 Ei;j � fVj
� �2

P4
j¼1 fVj
� �2

 !1=2

(15) 

with

f ¼
P4

j¼1 Ei;j
� �2

P4
j¼1 Ei;jVj

(16) 

and Ei;j indicates the luminance difference threshold 
of observer i for the angular size of the road arrow j 
and Vj indicates the luminance difference 
threshold averaged over all (six) observers for 
the angular size of the road arrow j. The result
ing STRESS values were converted to percen
tages by multiplying them by 100. The STRESS 
percentages for the 0.25, 0.66 and 0.99 cd/m2 

road surface luminance were 11, 10 and 5%, 
respectively. As suggested in the multidimen
sional scaling literature these STRESS percen
tages would be considered around fair (10%) to 
good (5%) (Garcia et al. 2007; Kruskal 1964).

Figure 7 shows the luminance difference thresh
olds obtained from the psychometric fits. It clearly 
shows that the luminance difference threshold 
decreases with increasing arrow size, and decreas
ing road luminance (or background luminance).

To confirm the statistical significance of the 
decrease in luminance difference threshold with 
increased angular size of the arrow and decreased 
background luminance, we performed a mixed 
repeated-measures factorial ANOVA with the road 
surface luminance and arrow angular size as inde
pendent factors (including also their interaction) and 
with the measured luminance difference threshold as 
dependent factor. The arrow angular size was taken 
as a within-subject independent variable, while the 
road surface luminance was included as a between- 
subject factor. Prior to further analysis, the assump
tions of homogeneity of variance and sphericity were 
checked. For the within-subject variable, the spheri
city hypothesis according to the Mauchly’s test 
across the four angular sizes of the arrow was 
rejected (p < .05); therefore a Greenhouse-Geisser 
correction was used. The Levene’s test of equality of 
error variances was rejected only for the arrow angu
lar size of 20.3 arcmin (p = .026). Since this implies 
that variance was similar for all other angular sizes 
and road surface luminance values, still a mixed 
repeated-measures factorial ANOVA was used. 
This analysis revealed a statistically significant main 
effect for the angular size of the arrow (F18.1,1.2 = 
123.96; p < .001; η2 = .89) and for the road surface 
luminance (F15,2 = 17.24; p < .001; η2 = .70). 
Furthermore, it revealed a significant interaction 

Fig. 7. The luminance difference threshold for each of the 6 
observers plotted against the arrow size (i.e., 20.3, 9.5, 5.5, 3.6 
arcmin) for each road surface luminance (i.e., 0.25, 0.66 and 
0.99 cd/m2).

1R2 throughout the paper refers to the Coefficient of Determination.
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between arrow angular size and road surface lumi
nance (F18.1,2.4 = 3.98; p < .05; η2 = .35). These effects 
are not surprising, as similar findings were reported 
before in Cao (2004) and Mayeur et al. (2010).

5.2. Applicability of the Adrian model

To compare our experimentally measured lumi
nance difference threshold values with the values 
predicted by the visibility model of Adrian, we 
calculated their mean value over all observers 
(and the respective 95% confidence interval) per 
road surface luminance and arrow angular size. 
The resulting mean luminance difference thresh
olds as a function of road surface luminance for 
the different values of the angular size of the 
arrow, and as a function of angular size of the 
arrow for the different values of the road surface 
luminance were fitted with Adrian’s model using 
Equation 1. The resulting fits are shown in Figs. 8 
and 9, respectively. In both figures, the solid lines 
indicate the predicted visibility by Adrian’s model, 
while the experimental data are shown by the 
crosses and their 95% confidence interval.

Figure 10 presents the overall correspondence 
between our experimental data and Adrian’s model 

in a scatter plot. The solid black line indicates perfect 
correspondence for a visibility level equal to 1 follow
ing the standard Adrian’s model for detection thresh
olds. Two goodness-of-fit values are determined: one 

Fig. 8. The measured luminance difference threshold plotted as 
a function of the road surface luminance for different values of 
the angular size of the arrow (separated by color). The means of 
the measured thresholds per condition are indicated by crosses 
and at each cross the corresponding 95% confidence interval is 
shown. Solid lines indicate the prediction by Adrian’s model.

Fig. 9. The measured luminance difference threshold plotted as 
a function of the arrow angular size for different values of the 
road surface luminance (separated by color). The means of the 
measured thresholds per condition are indicated by crosses and 
at each cross the corresponding 95% confidence interval is 
shown. Solid lines indicate the prediction by Adrian’s model.

Fig. 10. Our measured data plotted against the thresholds 
predicted by the visibility model of Adrian (black line). Crosses 
indicate the observed threshold for each participant and con
dition. The red line gives the best fit for an optimized model 
parameter k of 2.55.
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with the model parameter k (see Equation 1) taken as 
2.6 (i.e., the recommended value for a forced-choice 
method (Adrian 1989)), and one using a best fit after 
optimizing the model parameter k. They result in R2 

values of 0.75 and 0.75, respectively. In addition, 
Fig. 10 also shows that the “best fit” line is very close 
to Adrian’s model, indicating that the thresholds 
needed for discriminating the direction of an arrow 
can be estimated with Adrian’s detection threshold 
model without taking into account the anticipated 
higher thresholds because of the higher complexity 
of the visual task.

5.3. Thresholds for the Tadmor & Tolhurst model

For each scene presented to the observers, we 
calculated the Difference of Gaussian (DoG) 
value (as proposed by Tadmor and Tolhurst) per 
pixel in a frame of 150 × 150 pixels around the 
road marking arrow. We chose to use one fixed 
frame to encompass all road marking arrows, 
where the largest arrow (i.e., 20.3 arcmin) covered 
2.3% of the frame, whereas the smallest arrow (i.e., 
3.6 arcmin) covered 0.4% of the frame. To calcu
late the DoG value per pixel, we first converted the 
RGB-image within the frame to a luminance image 
using using the look-up table (mentioned in 
section 4.4 Calibration and measurements). We 
then applied the DoG model (Equations 2, 3 and 
4) with some modifications.

The first modification is that we wanted to use 
a global DoG value per scene CDoG, and therefore, 
summed all local DoG-values over the Np (i.e., 
150 × 150) pixels of the image (Donners et al. 
2015; Scheir et al. 2018):

CDoG ¼
XNp

p¼1
DoG x; yð Þj j (17) 

To do so, we replaced the DoG values by their 
absolute values in order to avoid compensation 
when adding positive and negative DoG pixel 
values (Donners et al. 2015; Scheir et al. 2018).

Second, instead of using the 0.85 weighting factor in 
the calculation of the surround receptive field 
(Equation 3), we chose a center/surround weighting 
factor of 1, which ensured that a region of uniform 
luminance extending from the edge of the surround 
receptive field did not contribute to CDoG. As 

a consequence, the amount of background pixels 
included on the final CDoG value was much lower. 
Finally, although theoretically the DoG value of 
a pixel for which the center and surround is comple
tely covering a uniform luminance region is meant to 
be zero, the discrete integral approximation as pro
posed by Tadmor and Tolhurst resulted in a small 
value of 0.00067. Although very small, when multi
plied by the whole frame (of 150 × 150 pixels), this 
might become such a large value that it masked the 
contribution of the fewer pixels signaling real contrast. 
To obtain an absolute zero DoG value for a uniform 
center and surround, the discrete integral values of the 
two bivariate Gaussians were rounded to five decimals 
and slightly adjusted to the values shown in the sup
plemental material.

Finally, the center radius rc was set at 1 pixel 
and the surround radius rs at 2 pixels, resulting in 
a center/surround ratio of 1:2. As the images were 
projected on a screen with a field of view of 42° 
vertically and 68° horizontally, each pixel repre
sented 0.89 arcmin horizontally and 1.17 min verti
cally. As such, the center radius rc of 1 pixel was in 
line with the angular resolution of the eye of 0.7 to 
0.8 arcmin (Clark 1990; Curcio et al. 1990) at the 
fovea. The center to surround ratio of the receptive 
field radii corresponded to the ratio reported by 

Fig. 11. DoG-filtered image of the 150 × 150 pixels of a road 
marking image for a road surface luminance of 0.99 cd/m2, road 
marking luminance of 1.19 cd/m2 and an arrow’s angular size of 
20.3 arcmin. The color bar at the right indicates the DoG values 
that correspond to the colors.
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Simone et al. (2012). An example of a DoG-filtered 
image is given in Fig. 11.

We then plotted psychometric curves (in the 
same way as explained before), but now using the 
calculated CDoG values instead of ΔL values at the 
ordinate. Figure 12 illustrates these psychometric 

curves for participant 1, 2 and 3, indicating the 
proportion correct responses for the four different 
angular sizes of the arrow, measured for a road 
surface luminance of 0.25 cd/m2. All psychometric 
curves result in an average R2 of 0.91 and R2-values 
ranging between 0.25 and 1.00 indicating a good fit 

Fig. 12. The psychometric curves fitting the proportion correct responses as a function of CDoG values for participant 1, 2 and 3 (from 
top to bottom, respectively). The psychometric curves were plotted for each angular size of the arrow: i.e., 20.3, 9.5, 5.5 and 3.6 
arcmin (from left to right, respectively). All plots refer to a road surface luminance of 0.25 cd/m2.

Fig. 13. (a) The averaged CDoG thresholds (indicated by the crosses) and their 95% confidence interval plotted against the angular 
size of the arrow for each road surface luminance (i.e., 0.25, 0.66 and 0.99 cd/m2). (b) Our measured data plotted against the CDoG 

thresholds. Crosses indicate the observed threshold for each participant and condition. The red line gives the best fit (R2 = 0.72).
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to the data, except for participant 10 at a road sur
face luminance of 0.25 cd/m2 and angular size of 
3.6 min of the arrow. As explained before, the latter 
data were overly dispersed (R2 of −0.88).

The mean CDoG thresholds (corresponding to 
the CDoG-value at 0.75 proportion correct, aver
aged over all 6 participants per road surface lumi
nance) are plotted in Fig. 13(a) together with their 
95% confidence interval (calculated using Bayesian 
statistics), similar as in Fig. 9. Fig. 13(b) presents 
the overall linearity between our experimental data 
and the CDoG thresholds in a scatter plot, similar as 
in Fig. 10. Overall, threshold values decrease with 
increasing angular size and decreasing road lumi
nance, in analogy with the luminance difference 
thresholds. If, the CDoG model would perfectly 
correlate with the discrimination of an arrow’s 
direction, one unique CDoG threshold value would 
emerge, irrespective of background luminance and 
angular size of the arrow.

Unfortunately, this is not the case. The average 
CDoG threshold value at 0.66 cd/m2 background 
luminance varies over 44% between the highest 
and lowest value across all angular sizes of the 
arrow. The average CDoG threshold values at 
0.66 cd/m2 background luminance vary over 
about 44% between the highest and lowest value 
across all angular sizes of the arrow. The varia
tion in threshold values at 10 arcmin angular size 

across the various levels of the road surface lumi
nance numbers 76%. Note that the CDoG model 
indeed does not include a global adaptation 
factor.

In addition to determining the CDoG thresholds 
also, similarly, the thresholds for the normalized 
contrast estimates (Cc, Cs, and Ccs) were deter
mined based on Equations 5–7. For the contrast 
estimates Cc, Cs, and Ccs, all psychometric curves 
resulted in an average R2 of 0.91 and R2-values 
ranging between 0.25 and 1.00 indicating a good 
fit to the data, except for participant 10 at a road 
surface luminance of 0.25 cd/m2 and angular size 
of 3.6 min of the arrow. The mean Cc, Cs, and Ccs 
threshold values (again, corresponding to the 0.75 
proportion correct, averaged over the six partici
pants per road surface luminance) are plotted in 
Fig. 14 together with their 95% confidence inter
val. Overall, threshold values decrease with 
increasing angular size. The average Cc, Cs, and 
Ccs threshold values at 0.66 cd/m2 background 
luminance vary over about 44% between the high
est and lowest value across all angular sizes of the 
arrow. The variation in threshold values at 10 
arcmin angular size across the various levels of 
the road surface luminance is about 0.051%. The 
overall linearity between our experimental data 
and the Cc, Cs, and Ccs thresholds is presented in 
separate scatter plots in Fig. 15.

Fig. 14. The averaged Cc (a), Cs(b), and Ccs (c) thresholds (indicated by the crosses) and their 95% confidence interval plotted against 
the angular size of the arrow for each road surface luminance (i.e., 0.25, 0.66 and 0.99 cd/m2).
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5.4. Thresholds for the Rizzi et al. model

In addition to determining the thresholds with the 
CDoG model, we determined the CRAMM threshold 

contrast values for each angular size, road surface 
luminance and road marking luminance. Again, 
the RGB image of 150 × 150 pixels around the 

Fig. 16. Psychometric curves fitted through the proportion correct responses as a function of the CRAMM values. The plotting 
arrangement is similar as in Fig. 12.

Fig. 15. Our measured data plotted against the Cc (a), Cs (b), and Ccs (c) thresholds. Crosses indicate the observed threshold for each 
participant and condition. The red line gives the best fit (R2 = 0.28 (a), 0.28 (b), 0.28 (c)).
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road marking arrow was converted into 
a luminance image, and subsequently used to cal
culate the CRAMM values according to Equation 8. 
Also these CRAMM values were compared to the 
proportion correct, and these data were used to fit 
psychometric curves, as illustrated in Fig. 16. 
Similarly, as with the other contrast measures, 
the psychometric curves resulted in an average R2 

of 0.91 with R2 values ranging between 0.25 and 
1.00, except for participant 10 at a road surface 
luminance of 0.25 cd/m2 and an angular size of 3.6 
arcmin of the arrow.

The averaged CRAMM threshold values (again, 
corresponding to 0.75 proportion correct, aver
aged over the six participants per road surface 
luminance) are plotted in Fig. 17(a) together with 
their 95% confidence interval, similar as in Figs. 9, 
13(a) and 14. Figure 17(b) presents the overall 
linearity between our experimental data and the 
CRAMM thresholds in a scatter plot, similar as in 
Figs. 10, 13(b), and 15. The average CRAMM thresh
old value at 0.66 cd/m2 road surface luminance 
varies over 87% between the highest and lowest 
value across the various angular sizes. The varia
tion in threshold values at 10 arcmin angular size 
across the various levels of the road surface lumi
nance numbers 34%.

5.5. Joulan et al. model

To compare our experimentally measured arrow- 
direction detection thresholds to the Joulan et al. 
visibility model, we transferred all stimuli (i.e., for 
each angular size, road surface luminance and road 
marking luminance) into SDoG-values using 
Equation 10, but with a similar modification as 
what we used in the Tadmor and Tolhurst model, 
i.e., that we summed all CSDoG-values over the Np 
(i.e., 150 × 150) pixels of the image, resulting in:

CSDoG ¼
XNp

p¼1
SDoG x; yð Þ (18) 

Subsequently, the proportion correct arrow- 
direction detections were plotted against the result
ing CSDoG-values, and fitted to a psychometric curve. 
Overall, also the CSDoG-values yielded good fits of the 
psychometric function to the fraction correct 
answers with a goodness of fit very comparable to 
the other visibility measures we considered so far 
(i.e., an average R2 of 0.91 and R2-values ranging 
between 0.25 and 1.00). The mean CSDoG-threshold 
values (again, corresponding to 0.75 proportion cor
rect, averaged over the six participants per road sur
face luminance) are plotted in Fig. 18(a) together 

Fig. 17. (a) The averaged CRAMM threshold values (indicated by the crosses) and their 95% confidence interval plotted against the 
angular size of the arrow for each road surface luminance (i.e., 0.25, 0.66 and 0.99 cd/m2). (b) Our measured data plotted against the 
CRAMM thresholds. Crosses indicate the observed threshold for each participant and condition. The red line gives the best fit 
(R2 = −0.85).
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with their 95% confidence interval. When compared 
to the average contrast threshold values of other 
contrast models, the average CSDoG threshold values 
show more consistency across different angular sizes 
of the arrow for a given road surface luminance. The 
average CSDoG threshold value at 0.66 cd/m2 road 
surface luminance varies over 16% between the high
est and lowest value across the various angular sizes. 
The variation in threshold values at 10 arcmin angu
lar size across the various levels of the road surface 

luminance numbers 30%. The overall linearity 
between our experimental data and the CSDoG thresh
olds is illustrated in a scatter plot in Fig. 18(b).

5.6. Simone et al. model

The Simone et al. model is the final one that we 
evaluated for predicting our experimental data. Also 
in this case we calculated for each angular size, road 
surface luminance and road marking luminance the 

Fig. 18. (a) The averaged CSDoG threshold values (indicated by the crosses) and their 95% confidence interval plotted against the angular 
size of the arrow for each road surface luminance (i.e., 0.25, 0.66 and 0.99 cd/m2). (b) Our measured data plotted against the CSDoG 

thresholds. Crosses indicate the observed threshold for each participant and condition. The red line gives the best fit (R2 = 0.092).

Fig. 19. (a) The averaged CWLF threshold values (indicated by the crosses) and their 95% confidence interval plotted against the 
angular size of the arrow for each road surface luminance (i.e., 0.25, 0.66 and 0.99 cd/m2). (b) Our measured data plotted against the 
CWLF thresholds. Crosses indicate the observed threshold for each participant and condition. The red line gives the best fit 
(R2 = −12.00).
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corresponding CWLF-value, using Equations 11–14 on 
the RGB images with a size of 150 × 150 pixels. The 
proportion correct responses measured in the experi
ment were then plotted as a function of the resulting 
CWLF-values, and these data were used to fit psycho
metric curves. The resulting psychometric curves 
fitted the data somewhat less well than for the earlier 
visibility models we evaluated, since the average R2 is 
reduced to 0.75 (from around 0.9). From the fits, we 
determined the mean CWLF-threshold values (again, 
corresponding to 0.75 proportion correct, averaged 
over the six participants per road surface luminance), 
and plotted them in Fig. 19(a) as a function of the 
angular size of the arrow, together with their 95% 
confidence interval. When compared to the average 
contrast threshold values of other contrast models, the 
average CWLF threshold values show less consistency 
across different angular size road surface luminance 
(99% variation over angular size at 0.66 cd/m2 road 
surface luminance and 74% variation over road sur
face luminance at 10 arcmin angular size). The overall 
linearity between our experimental data and the CWLF 
thresholds is shown in a scatter plot in Fig. 19(b).

6. Discussion

Our experimentally measured thresholds between 
a road marking luminance and the road surface lumi
nance corresponded well (R2 >0.7) with the luminance 
difference thresholds predicted by the visibility model 
of Adrian. Our participants had to indicate the point
ing direction of a road arrow, which is a considerably 
different paradigm from the one used before by 
Blackwell (1946), where participants had to indicate 
the presence of a stimulus. In that sense, it is 
a surprising result that the visibility model of Adrian 
predicts our experimental results so well; it shows that 
the model is more broadly applicable than where it 
originally was intended for. Although the results in 
general are very good, Fig. 10 shows that the predic
tion of the threshold for discriminating the pointing 
direction of an arrow is worse at small angular sizes of 
the arrow than at larger ones. A possible explanation is 
that there was more variation in experimental thresh
old values at the smaller angular sizes. Participants had 
difficulties in really seeing the actual direction of the 
road marking arrow at larger distances. Not surpris
ingly, we found the same effects of road surface 

luminance and arrow size on the discrimination of 
the arrow direction, as could be expected from existing 
literature on the detectability of objects. Furthermore, 
in calculating the size of the road marking arrow we 
chose for the plane angle subtended by the length of 
the road marking arrow in front of the eye. Another 
option would have been to use the equivalent target 
size as reported in COST331 for transverse road mark
ings which is expected to provide slightly larger angu
lar sizes.

Having a contrast threshold value that varies with 
the road surface luminance and the size of the arrow is 
inconvenient when having to design road lighting 
concepts. Ideally, designers can make use of a single 
visibility threshold value, independent of the back
ground and arrow luminance and the size of the latter. 
This single visibility threshold would allow road light
ing designers to determine the minimal level and 
direction of illumination for detecting the direction 
of a road marking arrow. Not only the Probeam 
illumination concept would benefit from such 
a single visibility threshold; it would also be useful 
for the optimization of road lighting and car head
lights in general. Hence, we evaluated multiple existing 
visibility measures to check whether they yielded 
a single contrast threshold value. In addition to 
Adrian’s model, we applied image-based contrast 
models to an image cut out around the road marking 
arrow. We replaced the ΔL values by these contrast 
values to determine the corresponding visibility 
threshold of the contrast metric under consideration. 
Some of these measures resulted in more spread over 
the different background luminance values and some 
measures resulted in more spread over the different 
angular sizes of the arrow. Our results suggest that the 
Joulan et al. model allows for the largest reduction in 
the variation in contrast threshold across different 
angular sizes of the arrow, however, still with substan
tial variation (%) in contrast threshold across different 
road surface luminance values. Besides the Joulan et al. 
model, also the Cc, Cs, and Ccs contrast measures of the 
Tadmor and Tolhurst model show a reduction in 
variation (%) in contrast threshold across different 
angular sizes of the arrow and the road surface lumi
nance values. Also, alternatively to the summation 
used in Equations 17 and 18, taking the maximum 
or average of all local (S)DoG was examined, however, 
we consider a summation more appropriate than 
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a maximum or average to account for the effect of size 
(i.e., the larger the arrow the larger the sum of DoG 
values; the smaller the arrow the smaller the sum of 
DoG values). The average CRAMM threshold values 
seem to indicate a bell-shape behavior as seen with the 
contrast sensitivity functions in Barten’s research. 
Though, when considering the confidence intervals 
the bell shape of the curves might be an artifact. The 
large variation (%) and the relatively small CWLF - 
values found with the Simone et al. model are most 
likely due to the fact that we used substantially lower 
luminance values as they recommended in their 
paper.

The Tadmor and Tolhurst, and Joulan et al. con
trast models show promising results for achieving 
a unique threshold value, irrespective of background 
luminance, object luminance and object angular size 
for the experimental paradigm used in this study. 
These promising results suggest that image based 
contrast models allow to predict contrast thresholds 
in simulated road environments with a larger com
plexity, although more research is needed to 
improve the consistency, to optimize the parameters 
and to investigate the applicability of these models 
to the whole complex scene. Future research should 
also include more recent contrast models (Brémond 
2020), and extend the analysis toward additional 
(natural) objects encountered while driving, as sug
gested in the study by Brémond et al. (2013). 
Furthermore, future work may include the replica
tion of this study with more participants.

7. Conclusions

We measured luminance difference thresholds for 
a rendered highway environment consisting of 
a road marking arrow in positive contrast to a road 
surface. Luminance of the arrow and the road sur
face as well as the angular size of the arrow were 
considered as important parameters. Experimental 
data of the proportions correct detection of the 
arrow direction were used to fit a psychometric 
curve as a function of the difference in luminance 
between the arrow and the road surface for various 
experiment conditions. These fits were then used to 
determine the luminance difference thresholds, and 
the resulting values corresponded very well (R2 of 

0.75) with thresholds predicted by the Adrian visibi
lity model, with the highest deviations occurring at 
the smaller angular sizes.

The results suggest that some image based con
trast models allow for a reduction in the variation in 
contrast threshold across different angular sizes of 
the arrow and road surface luminance values. As 
such, these models show promising results, but 
didn’t deliver yet the ultimate solution: a unique 
threshold value, irrespective of background lumi
nance, luminance difference and object angular size.

Image based contrast models also allow to predict 
contrast thresholds in simulated road environments 
with a larger complexity, although more research is 
needed to improve the reliability and to optimize the 
parameters.
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